Thallium(I)-bis(trimethylsilyl)amid

Karl Wilhelm Klinkhammer

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart (Deutschland)

Sonja Henkel

Institut für Organische Chemie, Universität Stuttgart, D-70550 Stuttgart (Deutschland) (Eingegangen den 2. Dezember 1993)

Abstract

The reaction of $LiN(SiMe_3)_2$ with TICI in toluene yields the bis(trimethylsilyl)amino derivative of thallium(I) (1). In the gaseous phase and in benzene solution the compound is mainly monomeric, whereas in the solid state the amide 1 consists of cyclic dimers, which are linked to infinite chains by intermolecular $TI \cdots TI$ contacts.

Zusammenfassung

 $LiN(SiMe_3)_2$ reagiert mit TlCl in Toluol zum Thallium(I)-Derivat (1) des Bis(trimethylsily)amins. Während in benzolischer Lösung und in der Gasphase das Amid 1 vorwiegend als Monomer vorliegt, besteht die Verbindung im Kristall aus cyclischen Dimeren, die über intermolekulare Tl \cdots Tl-Kontakte zu unendlichen Strängen aufgereiht sind.

Key words: Silicon; Thallium; Amide; Crystal structure

1. Einleitung

Einfache Thallium(I)-amide Tl-NR₂, in denen R für kleine organische oder elementorganische Reste steht, sind im Gegensatz zu entsprechenden Alkoholaten Tl-OR unseres Wissens kaum strukturell untersucht worden. Neben Thallium(I)-benztriazolat 2 [1], den Thallium(I)-Derivaten des 1,3-Diphenyltriazens 3 und des 1,5-Di-p-tolylpentaazadiens 4 [2] sind die Strukturen zweier silylsubstituierter, polycyclischer Thallium(I)-amide aufgeklärt worden: das Dithallium-Derivat eines Diamino-disiletidins 5 [3] und das Dimere des Tris(N-thallio-*tert*-butylamino)methylsilans 6 [4]. Verbindung 6 ist vor allem wegen ihres aus sechs Thalliumatomen bestehenden Gerüstes bemerkens-

Correspondence to: Dr. K.W. Klinkhammer

wert; in diesem findet sich der mit 315 pm kürzeste bislang beobachtete $TI(I) \cdots TI(I)$ -Abstand neben weiteren $TI \cdots TI$ -Kontakten ≥ 34.6 pm. Das von Cowley *et al.* synthetisierte Thallium(I)-hydrido-tris(3-t-butylpyrazolyl)borat 7 [5] ist zwar streng genommen kein Amid des Thalliums, doch wird auch hier das Metallatom von drei Stickstoffatomen des Boratliganden über relativ kurze TI-N-Bindungen koordiniert.

167

Wir berichten hier über die Synthese, sowie die spektroskopische und strukturelle Charakterisierung von Thallium(I)-bis(trimethylsilyl)amid (1). Obwohl

TABELLE 1. Schwingungsspektroskopische Daten von 1 [cm⁻¹]^a

IR ^b	Raman ^c	Zuordnungsvorschlag
1249 s (br)	1259 vw	
	1237 w	$\delta_{s} CH_{3}$
975 vs-s	-	ν _{as} NSi ₂ -Gegentakt
-	865 mw	ν_{as} NSi ₂ -Gleichtakt
830 sh	838 w (br) }	$\delta_{as} CH_3$
809 vs (br)	820 w /	
755 ms	Ì	۹ CH
745 m	742 mw)	p _s city
664)		
669∫ ^{ms}	600	ν_{as} SIC ₃
611 ms	-	$\nu_{\rm s}$ SiC ₃ -Gegentakt
	589 vs	$\nu_{\rm s}$ SiC ₃ -Gleichtakt
571 m (br)	579 w, sh	$\nu_{s} NSi_{2}$
398 ms (br)	-	$\nu_{\rm as} {\rm Tl}_2 {\rm N}_2$
-	366 ms	δ_s SiC ₃ -Gleichtakt + ν_s Tl ₂ N ₂ (Puls.)
356 mw	_	δ_s SiC ₃ -Gegentakt + ν_{as} Tl ₂ N ₂
285 m	-)	
-	265 w, sh	
244 w	247 w, sh 〉	$\delta_{as} + \rho_{s,as}$ SiC ₃ -Gleich- und Gegentakt
-	214 m	
-	196 ms	
	166 mw (br)	δ NSi ₂ -Gleichtakt
142		δ NSi-Gegentakt + δ Tl ₂ N ₂
136/		ay 1.0.2 Segundant , o 1.2.12
85 w	98 sh	Gitterschwingungen $(+TI \cdots TI ?)$
69 w	72 vs-s J	

^a Abkürzungen: sehr stark (vs), stark (s), mittelstark (ms), mittel (m), mittelschwach (mw), schwach (w), sehr schwach (vw), breit (br), Schulter (sh). ^b Aufgenommen an dünnem, festem Film zwischen CsBr- und Polyethylen-Platten (Perkin-Elmer PE 883 bzw. Bruker IFS 66/CS mit Bereichserweiterung). ^c An Einkristallen (Multikanal, Dilor-XY-System; Anregung: Argon-Gaslaser 514.5 mm).

Abb. 1. Molekülmodell von 1. Die Auslenkungsellipsoide der Schweratome sind auf 30% skaliert.

man Derivate des Bis(trimethylsilyl)amins von sehr vielen Elementen kennt [6] und auch die entsprechende Thallium(III)-Verbindung, $TI[N(SiMe_3)_2]_3$ (8), schon seit geraumer Zeit bekannt ist [7], sind einige wenige, charakteristische Vertreter wie das Thallium(I)-Derivat bislang nicht untersucht worden.

2. Synthese und spektroskopische Daten

Die Verbindung 1 ist leicht und in guter Ausbeute aus Thallium(I)-chlorid und Lithium-bis(trimethylsilyl)amid in Toluol zugänglich (Gl. (1)). Nach Abdestillieren des Lösungsmittels erhält man durch Extraktion des gelben Rückstandes mit *n*-Pentan eine gelbe Lösung, aus der durch Kristallisation $(+20/-60^{\circ}\text{C})$ oder durch Sublimation $(+60^{\circ}\text{C}, 10^{-2} \text{ Torr})$ solvensfreies Thallium(I)-bis(trimethylsilyl)amid (1) in kristalliner Form erhalten werden kann.

$$TICl + LiN(SiMe_3)_2 \xrightarrow{\langle Toluol \rangle}_{+40^\circ, 2d} TIN(SiMe_3)_2 + LiCl$$
(1)

Die blaßgelbe Verbindung ist zwar unter Argon und Lichtabschluß ohne erkennbare Zersetzung lagerbar, ist aber extrem oxidations- und hydrolyseempfindlich. Beim Kontakt mit Luft überzieht sie sich sofort mit einem leuchtendblauen Belag unbekannter Natur. Sie schmilzt bereits bei +81°C zu einer gelben Flüssigkeit und läßt sich unzersetzt sublimieren. Im Dampf liegen -zumindest bei kleinen Drücken-ausschließlich Monomere vor, denn im Massenspektrum des Amids 1 konnten nur Ionen bis zur Masse des Molekülions nachgewiesen werden.

Anders als beispielsweise bei den Verbindung 5 und 7 treten in den ¹H-, ¹³C- und ²⁹Si-NMR Spektren bei 300 K keine Kopplungen mit den NMR-aktiven Iso-

TABELLE 2. Ausgewählte Bindungslängen (pm) und -winkel (°) Verbindung 1

TI-N	258.1(7)	Tl-N'	257.6(7)
N-Si(1)	170.5(7)	N-Si(2)	173.7(8)
Si(1)-C(11)	188.9(12)	Si(1)-C(12)	185.5(12)
Si(1)-C(13)	191. 5(13)	Si(2)C(21)	186.7(10)
Si(2)–C(22)	185.1(10)	Si(2)-C(23)	178.7(10)
Tl · · · Tl'	365.0(1)	$T1 \cdots Tl''$	393.5(1)
Si(1) · · · Si(2)	301.5(3)		
N-TI-N'	89.9(2)	Tl-N-Tl'	90.1(2)
Si(1)-N-Si(2)	122.3(4)	C(11)-Si(1)-C(12)	104.7(5)
C(11)-Si(1)-C(13)	105.5(5)	C(12)-Si1-C(13)	108.6(5)
C(21)-Si(2)-C(22)	105.6(5)	C(21) - Si(2) - C(23)	105.6(5)
C(22)-Si(2)-C(23)	102.1(5)		
N-Tl · · · Tl″	122.6(2)	$N'-Tl\cdots Tl''$	125.4(2)

topen des Thalliums (I = 1/2) auf. Erst bei etwa 250 K bzw. 260 K spalten die ¹³C- und ²⁹Si-NMR-Signale zu Dubletts $({}^{3}J(C-TI) = 82$ Hz bzw. ${}^{2}J(Si-TI) = 37$ Hz) auf. Diese Beobachtungen sprechen ebenso wie die kryoskopisch zu 359 g mol⁻¹ bestimmte Molmasse für einen vorwiegend monomeren Aufbau in benzolischer Lösung und einen schnellen Austausch der Bis(trimethylsilyl)amino-Substituenten bei höheren Temperaturen. Die schwingungsspektroskopischen Daten (Tabelle 1) entsprechen weitgehend der Erwartung. Die Schwingungen des N(SiMe₃)₂-Gerüstes lassen sich aufgrund des umfangreichen Vergleichsmaterials auch ohne genaue Analyse leicht zuordnen. Dies trifft nicht für die Moden des zentralen Tl₂N₂-Rings zu, zumal die erhaltenen Raman-Daten keine Information über den Polarisationszustand zulassen.

Zur Klärung der Molekülstruktur führten wir an einem gut ausgebildeten Individuum eine Kristallstrukturanalyse durch.

3. Molekül- und Kristallstruktur

Thallium(I)-bis(trimethylsilyl)amid (1) besteht wie in Abb. 1 erkennbar im Festköper aus *dimeren* Bauein-

TABELLE 3. TI-N-Abstände [pm] in ausgewählten Thallium(I)-Verbindungen und dem Thallium(III)-amid 8.

Verbindung	d(TI-N)	
Tl(I)-benztriazolat 2 [1]	273 (2x), 279	
Tl(I)-1,3-diphenyltriazenid 3 [2]	262, 270, 278	
Tl(I)-1,5-di-p-tolylpentaazadienid 4 [2]	272 (2x), 278	
Diazadisiletidin-Derivat 5 [3]	252, 266, 274	
${MeSi[N(t-Bu)Ti]_3}_2 6 [4]$	230-265	
Tris[3-(t-Bu)pyrazolyl]borat 7 [5]	258 (2x), 259	
$[TIN(SiMe_2)_2]_2$ 1	257, 258	
$TI[N(SiMe_3)_2]_3 8 [7]$	209	

Abb. 2. Anordnung der dimeren Moleküle von 1 in Strängen. Die Wasserstoffatome wurden der besseren Übersicht wegen nicht wiedergegeben. Die Schweratome sind als Kugeln willkürlicher Größe wiedergegeben.

heiten. Das Gerüst ist ein planarer, nahezu quadratischer Tl₂N₂-Ring. Die Abstände (Tabelle 2) sind mit 257,6(7) bzw. 258,1(7) im Rahmen der einfachen Standardabweichungen gleich. Auch unterscheidet sich der endocyclische Winkel am Stickstoffatom mit 90,1(2)° nicht signifikant von dem zu 89,9(2)° bestimmten N-Tl-N-Winkel. Die Trimethylsilylgruppen sind oberund unterhalb der Ringebene derart angeordnet, daß das Molekül annähernd C_{2h} -Symmetrie, das Tl₂N₂Si₄-Gerüst sogar D_{2h} -Symmetrie besitzt.

Die Summe der Kovalenzradien von 230 pm (Tl 155; N 75 pm [8]) wird im Thalliumamid 1 erheblich überschritten, auch wenn man eine Bindungsverlängerung um etwa 20 pm infolge der zu 0,5 abgeschätzten Bindungsordnung berücksichtigt. Die TI-N-Abstände in den übrigen oben genannten Thallium(I)-Derivaten streuen ohne erkennbare Systematik in einem weiten Bereich zwischen 237 und 280 pm (Tabelle 3). Die Tl-N-Bindungen im Bis(trimethylsilyl)amino-Derivat 8 des dreiwertigen Thalliums sind mit 209 pm erwartungsgemäß erheblich kürzer. Ähnliche Abstände wie im Amid 1 finden sich erstaunlicherweise im Tris(pyrazolyl)-Derivat 7, in dem dreifach koordinierte Thalliumatome vorliegen. Möglicherweise ist auch die Bindungsaufweitung in 1 eine Folge einer Erhöhung der Koordinationszahl am Thallium, jedoch nicht durch klassische Donor-Liganden, sondern durch inter-

TABELLE 4. Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Auslenkungsparameter ($pm^2 \times 10^{-1}$) von Verbindung 1. U_{eq} : äquivalente isotrope Auslenkungsparameter berechnet als ein Drittel der Spur des orthogonalisierten U_{ir} Tensors.

Atom	x	у	z	U_{eq}
TI	2409.1(4)	371.9(3)	5277.8(3)	42.8(11)
Ν	- 107(10)	770(5)	3787(5)	42(2)
Si1	537(4)	219(2)	2606(2)	44.9(9)
Si2	- 798(3)	1973(2)	3824(2)	40.4(8)
C11	1089(15)	- 1095(8)	2885(8)	72(4)
C12	- 1304(17)	195(9)	1505(9)	74(5)
C13	2758(17)	754(10)	2020(10)	89(5)
C21	- 938(17)	2605(8)	2471(8)	73(4)
C22	741(14)	2731(7)	4716(8)	63(4)
C23	- 3122(13)	2100(8)	4292(8)	65(3)

molekulare Tl···· Tl-Kontakte (Abb. 2). Der Absolutwert des hier beobachteten intermolekularen Thallium-Thallium-Abstandes ist jedoch mit 393 pm nur noch geringfügig kürzer als der doppelte van-der-Waals-Radius (400 pm) und liegt somit an der oberen Grenze von Kontakten, die bei vielen anderen Tl(I)-Verbindungen aufgefunden wurden [9] und nach abinitio-Rechnungen an Thallium(I)-wasserstoff Tl₂H₂ als schwach bindend klassifiziert werden können. Die Bindungsenergie ist dabei deutlich abhängig vom Tl-Tl-Ligand-Winkel und erreicht bei etwa 120° ein Maximum [10]. In Übereinstimung mit diesen Berechnungen beobachtet man auch im Amid 1 N-Tl···· Tl-Winkel von etwa 120° (Tabelle 4). Mit derartigen Tl ··· Tl-Wechselwirkungen im Einklang wäre auch eine sehr intensive Raman-Absorption bei 72 cm $^{-1}$.

In diesem Zusammenhang sei kurz auf die Unterschiede in den Kristallstrukturen des Thalliumamids 1 (Abb. 3) und den analogen Kalium- und Rubidiumverbindungen hingewiesen. Während sich die Moleküle des Thallium-Derivats über die erwähnten $T1 \cdots T1$ -Kontakte in Strängen anordnen, bilden die Moleküle der beiden genannten Alkalimetall-bis(trimethylsilyl)amide trotz sehr ähnlicher Molekülgeometrien eine völlig anderen Packung aus; in diesen bestimmen intermolekulare agostische C-H \cdots M-Wechselwirkungen die Anordnung im Kristallverband [11*,12]. Die Metallatome (M = K,Rb) sind dabei mit etwas mehr als 500 pm nahezu weitmöglichst voneinander entfernt.

4. Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Argon (BTS-Katalysator [13], P_4O_{10}) in getrockneten, destillierten und mit Argon gesättigten Lösungsmitteln durchgeführt.

4.1. Darstellung von 1

Zu einer Lösung von 5.00 g (2.99 mmol) Lithiumbis(trimethylsilyl)amid in 25 ml Toluol werden 8.00 g (3.34 mmol) Thallium(I)-chlorid gegeben. Die Suspension wird 2 Tage bei + 40°C gerührt und anschließend über eine Schutzgasfritte (G4) filtriert. Die so erhaltene Lösung wird im Vakuum bis zur Trockne eingeengt und der verbleibende gelbliche Rückstand aus *n*-Pentan umkristallisiert oder bei + 60°C und 10⁻³ Torr sublimiert. Beide Verfahren liefern hellgelbes kristallines Amid 1 in analysenreiner Form. Ausbeute 9.26 g (85%). Fp. 81°C. ¹H-NMR (C₆D₆, 300 K, 250.133

Abb. 3. Kristallstruktur von 1 in stereoskopischer Darstellung. Die Wasserstoffatome wurden der besseren Übersicht wegen nicht gezeichnet. Die Schweratome sind als Kugeln willkürlicher Größe wiedergegeben.

 TABELLE 5. Kristalldaten von 1 sowie Angaben zur Messung der

 Reflexintensitäten und zur Strukturbestimmung.

Formel	TINSi ₂ C ₄ H ₁₀		
Molmasse [g mol ⁻¹]	364.78		
Kristallgestalt und	säulenförmig		
-abmessungen [mm]	$0.7 \times 0.4 \times 0.4$		
Kristallsystem	Monoklin		
Raumgruppe	$P2_{1}/n$ (Nr. 14)		
Meßtemperatur [°C]	25		
<i>a</i> [pm]	717.3(1)		
<i>b</i> [pm]	1383.7(3)		
<i>c</i> [pm]	1219.0(2)		
β[°]	91.73(1)		
<i>V</i> [nm ³]	1.209		
Ζ	4		
F(000)	680		
$d_{\rm ber} [{\rm g} {\rm cm}^{-1}]$	2.003		
μ [mm ⁻¹]	13.64		
Absorptionskorrektur	empirisch; DIFABS [14]		
Abtastmodus und -breite [°]	Wyckoff; 1.2		
Abtastgeschwindigkeit [°·min ⁻¹]	variabel; 1.5 bis 29.3 in ω		
Zahl der Intensitätskontrollreflexe	3(n = 97)		
nach <i>n</i> gemessenen Reflexen			
Meßbereich [°]	$3^\circ \le 2\Theta \le 52^\circ$		
Gemessener Bereich	$-8 \le h \le 8; 0 \le k \le 17;$		
des reziproken Raumes	$0 \le l \le 15$		
Gemessene Reflexe	2576		
Symmetrieunabhängige Reflexe	2383		
Meßwerte N_0 mit $F_0 > m\sigma(F_0)$	2337 (m = 0)		
Anzahl der verfeinerten	97		
Parameter N _p			
$R; wR^{a}$	0.060; 0.041		
$N_{\rm o}/N_{\rm p}$	24		
Minimale/Maximale	-1.04; +1.33		
Differenzelektronendichte	(102 pm neben Tl)		
$[e \cdot A^{-3}]$			

 $\frac{\overline{F_{o}} - \sum |F_{o}| + |F_{c}|| / \sum F_{o}; \quad wR = \{\sum [w \cdot (F_{o} - |F_{c}|)^{2}] / \sum (w \cdot F_{o}^{2})\}^{1/2}; \\ \text{GOF} = \{\sum [w \cdot (F_{o} - |F_{c}|)^{2}] / (N_{o} - N_{p})\}^{1/2}.$

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

MHz): δ 0.23 ppm (¹J(H-C) = 117 Hz; ²J(H-Si) = 6.2 Hz). ²⁹Si-NMR (D8-Toluol, 302 K, 39.761 MHz): δ = 4.3 ppm. ¹³C-NMR (D8-Toluol, 302 K, 50.324 MHz): δ = 5.39 ppm (¹J(C-Si) = 53.2 Hz). Massenspektrum (20 eV; Quellentemperatur: 430 K; Probentemperatur 340 K): m/z (%) M⁺, 365 (8.7); M⁺ – Me, 350 (23.6); Tl⁺, 205 (9.6); (Me₃Si)₂NH⁺, 161 (8.1); (Me₂Si) (Me₃Si)NH⁺, 146 (100), Me₄Si₂N⁺ 130 (5.2). Molmasse (kryoskopisch in Benzol): Gef. 359 g mol⁻¹; Ber. 364.78. Analyse: Gef. C, 19.10; H, 4.90; N, 3.76. ber. C, 19.76; H, 4.97; 72, N, 3.84%.

4.2. Kristallographische Daten von 1

Die Intensitätssammlung erfolgte an einem Individuum, das zuvor in eine mit Argon befüllte Lindemann-Kapillare eingeschmolzen wurde. Angaben zur Bestimmung der Zellkonstanten und zur Datensammlung können Tabelle 5 entnommmen werden. Die Daten wurden mit dem Programm DIFABS [14] auf Absorptionseffekte korrigiert. Die Struktur wurde mit Hilfe Direkter Methoden (Programmteil XS des Pakets SHELXTL-Plus [15]) gelöst und mit dem Verfahren der kleinsten Fehlerquadrate (volle Matrix) verfeinert (Programmteil XLS). Die Tl-, Si-, N- und C-Atome wurden anisotrop verfeinert (Tabelle 4), die Wasserstoffatome geometrisch ideal positioniert (C-H 97 pm; H-C-H 109.5°) und ihre Lagen nach einem Reitermodell in die Verfeinerung einbezogen. Ihre isotropen Auslenkungsparameter wurden gruppenweise frei verfeinert. Weitere Einzelheiten zur Kristallstrukturanalyse können bei den Autoren angefordert werden.

Dank

Wir danken Herrn Dr. G. Heckmann, Frau K. Török und Herrn P. Bergk für die Anfertigung der Kernresonanzspektren, Herrn Dr. Opitz und Herrn F.M. Bender für die massenspektroskopischen Untersuchungen, Herrn Prof. Dr. J. Weidlein für die Aufnahme der schwingungsspektroskopischen Daten und hilfreiche Diskussionen sowie Herrn Prof. Dr. G. Becker für seine großzügige Unterstützung.

Literatur und Bemerkungen

- 1 J. Reedijk, G. Roelofsen, A.R. Siedle und A.L. Spek, *Inorg. Chem.*, 18 (1979) 1947.
- 2 J. Beck und J. Strähle, Z. Naturforsch. B, 41 (1986) 1381.
- 3 M. Veith, F. Goffing und V. Huch, Chem. Ber., 121 (1988) 943.
- 4 M. Veith, A. Spaniol, J. Pöhlmann, F. Gross und V. Huch, Chem. Ber., 126 (1993) 2625.
- 5 A.H. Cowley, R.L. Geerts, C.M. Nunn und S. Trofimenko, J. Organomet. Chem., 365 (1989) 19.
- 6 Übersicht in: M.F. Lappert, P.P. Power, A.R. Sanger und R.C. Srivastava, *Metal and Metalloid Amides*, Ellis Horwood, Chichester, 1980; siehe auch Lit. 11.
- 7 R. Allmann, W. Henke, P. Krommes und J. Lorberth, J. Organomet. Chem., 162 (1978) 283.
- 8 J. Emsley, The Elements, 2. Aufl., Clarendon, Oxford, 1991, S. 2.
- 9 Siehe beispielsweise: P. Jutzi, H. Schumann, C. Janiak und M. Veith, in B. Krebs (Hrsg.), Unkonventionelle Wechselwirkungen in der Chemie metallischer Elemente, Verlag Chemie, Weinheim, 1992, S. 125, 173, 186.
- 10 P. Schwerdtfeger, Inorg. Chem., 30 (1991) 1660; G. Treboux und J.-C. Barthelat, J. Am. Chem. Soc., 115 (1993) 4870.
- 11 [KN(SiMe₃)₂]: K.F. Tesh, T.P. Hanusa und J.C. Huffman, *Inorg. Chem.*, 29 (1990) 1584. Die Autoren erwähnen erstaunlicherweise nur die intramolekularen K ··· C-Kontakte, obwohl ähnlich kurze Wechselwirkungen auch zwischen den dimeren Molekülen auftreten und so offensichtlich die Kristallpackung bestimmen.
- 12 [RbN(SiMe₃)₂]: W. Frey und K.W. Klinkhammer, unveröffentlicht.
- 13 M. Schütze, Angew. Chem., 70 (1958) 697.
- 14 N. Walker und D. Stuart, Acta Crystallogr. A, 39 (1983) 158.
- 15 SHELXTL-Plus, Rel. 4.0, Siemens Analytical X-Ray Instruments, Madison, WI, 1989.